Modeling multivariate extremes via
regular variation: an application to
high-frequency financial returns

Grant Weller

-

savvysherpa’
. oy

NCSU Statistics Seminar
March 3, 2015

Joint work with Mingyu Tang, Carnegie Mellon University
Support from NSF grant DMS-1043903



High-frequency trading

e More than 70% of total volume in 2010
e “Flash crash” (May 2010)

e Controversial — market manipulation?
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Why study high-frequency data?

e Statistical arbitrage for flash trading

e Protection against risk / identifying trading opportunities
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“HFT isn’t going away anytime soon; the
try to understand it.” — Rene Carmona
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best we can do is



Statistical properties of high-frequency returns

Some of ‘the usuals’...

e Temporal volatility clustering
e Heavy tails

e Correlation and tail dependence
. and additionally, microstructure properties:

e Intraday volatility patterns

e Spikes / jumps

Tail properties have been found to vary with time scales con-
sidered (Miller et al, 1999).



Data

We obtained eight days of 15-second returns on four banking
sector stocks.

As IS common practice, we work with log-returns:
Yie = 109(pit/pit—1)

for stock 7z at time increment ¢t.
JPM

07/06 09:40 —
07/06 12:44 —
07/06 15:48 —
07/07 12:44 —
07/07 15:48

07/08 12:44 —
07/08 15:48 —
07/09 12:44 —
07/09 15:48 —
07/12 12:44 —
07/12 15:48 —
07/13 12:44 —
07/13 15:48 —

N\

Split the data into training (4 days) and test (4 days) sets.



Outline

e Modeling marginal temporal features

e Studying tail dependence

— What is tail dependence?
— Modeling via regular variation

e [ail dependence in banking stock returns
e Portfolio VaR forecasting

e Extensions



Extracting marginal temporal structure

Let Y;; be the log-return of stock z at time t. We use the

model
Yiie = ¢i(t)oi i Zis,

where

qﬁz(t) — gbz(t —|— 24 hrs)

2 __ 2 2
Ot — 7 + aZz',t—l + Bai,t—l

Zz',t Zfz\gl (Oa 1)

GARCH(1,1) structure with intraday seasonal volatility.

Modeling:
e Remove intraday seasonality

e Estimate GARCH model



Intraday volatility

We fit a smoothing spline to the intraday volatility pattern.

volatility intraday trend
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Typical ‘U-shaped’ volatility curves



GARCH model

2 __ 2 2
Ot — 7 + aZi,t—l + Bo-z',t—l

Volatility sequences:
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Marginal extremal behavior

We fit generalized Pareto distributions to exceedances of up-
per and lower tails of estimated residual sequences Z;;.

Y
P(Z>Z|Z>u):<1—|—§z “) 1

(o)

Retain 7.5% of the data (in each tail) for GPD fitting.

Estimates of &:

Stock JPM PNC WFC USB

Upper —0.10 (0.08)]0.11 (0.08)/0.23 (0.13) —0.01 (0.09)
Lower 0.26 (0.08) |0.22 (0.08)0.34 (0.10) 0.20 (0.08)

LLower tail appears heavier than upper tail.
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Multivariate extremes and tail dependence

You have already learned about univariate EVT. In the mul-
tivariate setting, we need a description of ‘tail dependence’.

Some important questions:

e How do we talk about dependence for extremes?
e \What do we actually mean by a ‘multivariate extreme’?

e W What modeling frameworks are available for inference?

Here's the 20-minute version...



Dependence for extremes

Multivariate extremes typically focuses on quantities like

P( max X; <z, max Y; <y) 1= G(z,y)

or the conditional probability
PY >y | X >x)
for large values of x and y.

LLoosely, the question we want to answer is “How do the
extreme values of Y depend on the extreme values of X7"

Examples:
e consecutive days of excessive heat

e monitoring dangerous pollutant levels
e extreme precipitation events affecting multiple locations
e combinations of extreme values which lead to failure



Tail dependence

A full characterization of tail dependence is crucial for many
risk assessments. But, this is a challenging problem.

‘Usual’ way of describing dependence:
E[(X —EX)(Y —EY)]

p= :
VEI(X —EX)2E[(Y — EY)?]

=3
8 4
=

20 40 60 80 100

5= 0.59 5= 0.83

Correlation focuses on ‘spread from center’ and typically does
not capture tail dependence.



Measuring tail dependence

Many summary measures exist for tail dependence. Most can
be written as functions of each other.

Assume X and Y have cdfs F'. An intuitive measure is

x(q) =P(Fy(Y) > q | Fx(X) > q)
=P >y, | X > z,),

where z,, y, are the g quantile levels of X and Y.

If lim,1x(q) = 0, X and Y are said to be asymptotically
independent. Otherwise they are asymptotically dependent.

This is quite different from correlation: e.qg., if (X,Y)? follow
a bivariate normal distribution with any correlation less than
one, X and Y are asymptotically independent.



Estimating tail dependence from data

X 1S an empirical measure of asymptotic dependence.
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Defining a ‘multivariate extreme’

How should we think of multivariate extremes? Which portion
of the data do we keep for estimation purposes?

Let {Z; = (Z;1,....,Z;q)'}, i=1,...,n be a sequence of obser-
vations of a d-dimensional random vector.

Block maxima definition: Construct multivariate block maxi-
ma M, = (V" X;1,...,V: X, ). Leads to multivariate max-
stable distributions.

Marginal exceedances: For each margin j = 1,...,d, select a
threshold «; and retain data such that Z;; > u;. Leads to
multivariate GPD and censored likelihood methods.

Norm exceedances: (in the heavy-tail case) Retain data such
that ||Z;]| > u for some norm ||-||. Leads to multivariate regular
variation framework.

See Huser et al. (2015) for a comparative study



Original Data

Block Maxima




Multivariate regular variation

Intuitive description: joint tail decay like a power function.

e Spectral decomposition
e [ail dependence described by an angular measure
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MRV definition 1 (Resnick, 2007)

A random vector Z is regular varying on the cone € = [0, oo] \
{0} if there exists a normalizing sequence {a,}>2; with a, — oo
such that

nP (E c > — v(-)

Qn

as n — oo in My(¢), where — denotes vague convergence
of measures.

e Scaling property: v(tA) = t—“v(A) for t > 0, where « is
called the tail index

e Extremes of the multivariate sample occur according to
the limiting measure v

e a, is regular varying of index 1/a (i.e. a, ~ nl/%)

If marginals are unit Fréchet, a = 1.






MRV definition 2: the angular measure

Define ‘radial’ and ‘angular’ components R = ||Z||, W =
Z||Z||~t, where || - || is any norm on €.

The regular variation condition can then be written

nlP (E >r, W € B) s r“H(B)

Qn,

for any Borel set Be N={zc C:|z| = 1}.

e H is a measure on N which characterizes tail dependence
e By choice of a,,, H can be made to be a probability measure
e Equivalent convergence of Poisson point process

Loosely, (R, W) ~ r~1=2H(dw) for large r.



Radial and angular components
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Likelihood inference

For a fixed sample of size n, assume

nP (E >r W € ) =r “H()

p,
for r > rq (large).

Likelihood:

No
L(O | z1,...,2,) x exp{—rg®} |] ri_(l_i_a)h(wi; 0)
i=1

where r; = ||z|| and w; = z]|z;]|~t, for the points z,...

with r; > ro.

MLE can be computed numerically.



Models for H

No finite parameterization encompassing all possible extremal
dependence structures.

e Non-parametric approaches (usually in d = 2)

e Some parametric subfamilies developed

Simplest parametric model is Gumbel's logistic: in d = 2, let
r=z+ 2z and w =z /r.

h(w, B) = %(5_1 — D{w(1 —w)} VTV VA 4 (1 —w) /A2

e 3 — 1 corresponds to asymptotic independence
e 3 — 0 in the case of perfect dependence
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HFT data in tail modeling framework

We examine the pairwise joint upper and lower tail behavior
of 15-second returns.

e Transform marginals
e Fit bivariate logistic model

Upper talil Lower tail
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Logistic model parameter estimates

MLE of 3 for both upper and lower tails.

PNC WFC USB
0.68 (0.17)]0.69 (0.17)0.69 (0.17)
0.65 (0.18)]0.66 (0.18)|0.64 (0.19)

0.66 (0.18)|0.66 (0.18)

JPM

PNC 0.64 (0.19)0.62 (0.20)
0.65 (0.18)
WFC 0.66 (0.18)

Moderate levels of asymptotic dependence here across both
upper and lower tails.
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Portfolio Construction

Consider an equally-weighted (in dollar value) portfolio of two
stocks 2 and 5 with value

Xz'j,t — W;Pit -+ WiPj.t

at time t, where w;p; 0 = w;pjo.

What is the behavior of the portfolio log-return sequence
109(Xij+/Xijt—-1)7

We consider one-step forecasting of value-at-risk:
VaR.(Y) =sup{z : P(Yi+1 < z | Ft) < a},

where F; represents the information available at time ¢.

Consider both lower tail (losses) and upper tail (gains).



One-step forecasting

Recall the model
Vit = ¢;(t)0j1 2.

Forecast the portfolio log-return X;;,4+1 via simulation:

1. Generate (Z;, Z;)1+1 semiparametrically:

e Use bivariate logistic model above thresholds
e Empirical distribution below

2. Forecast G441 = ¥ + a:Z?, + Bic?,, also for j.

3. Use (Yiit1,Yis41) to forecast X y1.



Example

Four days of one-step forecast distributions for an equally-
weighted portfolio of JPM and PNC stock.

Time-varying VaR
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Comparison with Gaussian approach

Consider the alternative of modeling the residual sequences
(Zi, Z;) as Gaussian.

e Assumes dependence is completely captured by correlation

Pr[Ts1,T<1] = @, (E(L), ¢'(E,(1)),Y)

Wired magazine: “Recipe for Disaster: The Formula that Kil-
led Wall Street” . February 23, 2009.

What does this imply about extremes of portfolio returns?



Comparison with Gaussian approach

Exceedances of estimated VaR from each model:

number of exceedance of 0.995 VaR number of exceedance of 0.005 VaR
S - — EVD S - — EVD
—— Bivariate Gaussian —— Bivariate Gaussian
S 4 — Expectation with 95% CI o Expectation with 95% ClI

portfolio portfolio

Gaussian underestimates risk by as much as a factor of two.
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“Beyond the positive orthant” (Resnick, 2007)

It seems more elegant to transform to, e.g., Cauchy marginals
and model norm exceedances on the cone [—oo, o0] \ {0}.

e Easy extension of regu-
lar variation theory

e Difficult in practice

JPM

e Extension to d > 2 chal-
lenging

100

PNC



Appropriate models for high-frequency data

Our findings suggest nearly non-stationary volatility sequences,
as the a; + jB; are close to 1.

LLong-range forecasts unreliable.

Possible alternative: jump processes (e.g. Fan and Wang,
2007)

Further reading: December 2014 special issue of Extremes: Ex-
tremes in Finance.



T hanks!

Tang, M. and Weller, G.B. Bivariate tail risk analysis for
high-frequency returns via extreme value theory. submitted
to Quantitative Finance.

Contact: gweller57@gmail.com

Website: grantbweller.com
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