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The promise of EHR in clinical research

Opportunity:

LLarge amounts of rich observational data
_|_

modern statistical & machine learning methods
?

new discovery of clinical practice improvements, decision
support, personalized treatments, etc.

Potential pitfalls:

e Messy data (missingness, censoring, mixed types, etc.)
e Variation in reporting standards (suitable for research?)
e Heterogeneity in compliance measures

e Confounding



Colorectal surgery complications

We explore opportunities for EHR in prediction and detection
of complications of colorectal surgery.

e Mayo CRS: ~2,000 procedures per year; 10 faculty

e Diagnoses: colorectal cancer, colitis, Crohn’s, etc.

Focus on three complications:

e Surgical site infection
e Bleeding (intraop / postop)

e Ileus (partial bowel obstruction / use of NG tube)

Obtained data from years 2010—2013.



Summary points

e Significant data preparation work needed to use EHR for
risk prediction

e Which method(s) to use? Exploring possibilities...

e [ here are opportunities to inform clinical practice



Surgical case definitions

We constructed a set of procedure-centered variables from
raw data based on recorded operation start and stop times.

e Background / demographics

e Prior surgery history

e Labs taken within 72 hours preop

e Diagnosis and procedure information
e Post-surgical monitoring data

Constructed about 200 total input features for modeling.

e QOutliers removed

e Missing data imputed via Bayesian regression model



Preparing data for modeling

Most complication outcomes undocumented in

80% of patients

CRS surgical
cases 2010-2013
(n = 9,598;
4,773 patients)

Complication indica-
tors not validated
(n = 6,511)

Training set
(n = 7,748;
3,863 patients)

our data.

20% of patients

Test set (n =

1,850; 910 patients) |

Complication indica-
tors not validated
(n = 1,548)

Diagnosis, proce-
dure data unavail-
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- — — —

Cases with validated
complication Y/N
outcome (n = 1,237)

Cases with validated
complication Y/N
outcome (n = 302)

Diagnosis, pro-
cedure data un-
available (n = 70)

Models trained on
n = 1,051 cases

Models tested on
n = 232 cases

For comparison, we also obtain clinical “rule engine” data

e Deterministic SQL-based rule set

e Generates yes/no/unknown



Summary statistics

Complication rates:

Complication

Training Test

SSI
Bleeding
Ileus

9.7%  6.0%
13.6% 13.9%
11.5% 10.3%

Related work (see poster of M. Huebner):
e Complication rates vary by diagnosis / procedure
e Co-occurrence rates vary as well
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Exploration of prediction methods

We explore the predictive performance of several statistical
and machine learning methods:

e Regularized (LASSO) logistic regression
e Random forests

e Naive Bayes

e Support vector machines

e Boosted classifiers

We construct four models for each method:

e Pre-surgery
e Post-op days O, 1, 2

See Hastie et al. (2009) for a good overview.



Evaluation

We investigate several aspects of prediction methods:

e Area under receiver operating characteristic (ROC) curve
e Discovery of most relevant features for prediction
e Comparison with deterministic clinical rule

e Evaluation at different data collection points (pre-op, POD
0—2)

e Comparison of response surfaces



Test set results: SSI

AUC at different timepoints (left);

SSI test set results
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Implications for practitioners

Examining prioritization and resource trade-offs.
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Example of prediction: bleeding, PODO
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Model comparisons

The differences in models’ predictive ability were small con-
sidering the small size of the training set.

e Linear methods with regularization perform as well as more
complex approaches here

e VValue as a data mining tool to identify ‘movable’ predictors

Clinically relevant findings:

e Duration of surgery is strongest predictor of complications
e \Wound type, existing conditions also risk indicators
e Probabilistic approach comparable to clinical rule



Future possiblities

Further development of probabilistic risk calculators from ob-
servational data is a promising area of research.

e Time to event modeling (Wolfson et al., 2015)

e Predictions with dynamic covariates

e Implementation in decision support tools

All the above require standardized, well-documented EHR
data, including follow-up.

Development needed in both data collection / architecture
and in inferential methodology.
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