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Multivariate extremes

The aim of a multivariate extreme value analysis is to de-
scribe the joint upper tail of a random vector.

Examples:

• Estimating risk from combined effect of simultaneous ex-
tremes in multiple variables

• Modeling storms affecting several locations simultaneously

• Risk assessment in financial portfolios

• Long-range dependence in network traffic

Modeling is based on asymptotic results; not necessary to
know the entire underlying distribution.
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Motivating example

Daily air pollution measurements in Leeds, UK (n = 2078).
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Aim: model-based estimates of risk set probabilities
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Multivariate tail models

• Univariate extremes: described by ‘three types’

F (x) = exp{−(1 + ξz)−1/ξ}

• Multivariate: no finite parameterization

• Separation of marginal & dependence structures

• Most models assume asymptotic dependence of compo-
nents

This talk: a model for tails when asymptotic dependence does
not hold.
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Tail models in practice

Marginal and dependence effects are typically handled sepa-
rately.

Given iid realizations from a d-dimensional random vector X:

1. Estimate (upper tails of) marginal distributions X1, ..., Xd

2. Transform to something nice∗

3. Fit dependence model

∗‘Nice’ = regularly varying; often, unit Fréchet
(F (z) = exp{−z−1})

A bit ‘copula-like’...but focuses specifically on the tail.
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Outline

• Crash course on multivariate regular variation

• Hidden regular variation

• Sum characterization of HRV

• Inference for HRV via MCEM

• Application: air pollution data
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Multivariate regular variation

Intuitive description: joint tail decay like a power function.

• Spectral decomposition

• Tail dependence described by an angular measure
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MRV definition 1 (Resnick, 2007)

A random vector Z is regular varying on the cone C = [0,∞]\
{0} if there exists a normalizing sequence {an}∞n=1 with an →∞
such that

nP
(
Z

an
∈ ·
)

v−→ ν(·)

as n → ∞ in M+(C), where
v−→ denotes vague convergence

of measures.

• Scaling property: ν(tA) = t−αν(A) for t > 0, where α is
called the tail index

• Extremes of the multivariate sample occur according to
the limiting measure ν

• an is regular varying of index 1/α (i.e. an ∼ n1/α)

If marginals are unit Fréchet, α = 1.
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ν(tA) = t−αν(A)
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MRV definition 2: the angular measure

Define ‘radial’ and ‘angular’ components R = ‖Z‖, W =
Z‖Z‖−1, where ‖ · ‖ is any norm on C.

The regular variation condition can then be written

nP
(
R

an
> r,W ∈ B

)
v−→ r−αH(B)

for any Borel set B ∈ N = {z ∈ C : ‖z‖ = 1}.

• H is a measure on N which characterizes tail dependence

• By choice of an, H can be made to be a probability measure

• Equivalent convergence of Poisson point process

Loosely, (R,W) ∼ r−1−αH(dw) for large r.
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Radial and angular components
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Likelihood inference

For a fixed sample of size n, assume

nP
(
R

an
> r,W ∈ ·

)
∼= r−αH(·)

for r > r0 (large).

Likelihood:

L(θ | z1, ..., zn) ∝ exp{−r−α0 }
N0∏
i=1

r−(1+α)
i h(wi; θ)

where ri = ‖zi‖ and wi = zi‖zi‖−1, for the points z1, ..., zN0

with ri > r0.

Parameters can be estimated via numerical optimization.

e.g. (Coles and Tawn, 1991; Cooley et al., 2010; Ballani and
Schlather, 2011.)
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Outline

• Crash course on Multivariate regular variation

• Hidden regular variation

• Sum characterization of HRV

• Estimation for HRV via MCEM

• Application: air pollution data
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When multivariate regular variation fails

In some cases, H places zero mass on regions of N.

Example: asymptotic independence in d = 2:

lim
z→∞

P(Z2 > z | Z1 > z) = 0.

• H consists of point masses at {0} and {1} (under ‖ · ‖1)

• e.g. bivariate Gaussian with correlation ρ < 1

Normalization by an kills off sub-asymptotic dependence struc-
ture.
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Statistical issues

• Taking the limiting form as exact equality assumes

P(a−1
n Z1 > z1, a

−1
n Z2 > z2) = 0,

a potentially dangerous assumption in practice.

• On the other hand, incorrectly assuming asymptotic de-
pendence will result in overestimation of joint tail risks

Need to account for positive dependence in the presence of
asymptotic independence.
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Hidden regular variation (Resnick, 2002)

A regular varying random vector Z exhibits hidden regular
variation on a subcone C0 ⊂ C if ν(C0) = 0 and there exists a
sequence bn →∞ with bn/an → 0 s.t.

nP
(
Z

bn
∈ ·
)

v−→ ν0(·)

as n→∞ in M+(C0).

• Scaling: ν0(tA) = t−α0ν0(A) for measurable A ∈ C0, α0 ≥ α
• ν0 is Radon but not necessarily finite

Equivalently,

tP
(
R

bn
> r,W ∈ B

)
v−→ r−α0H0(B)

for B a Borel set of N0 = C0 ∩N (e.g. N0 = (0,1)).

H0 is called the hidden angular measure.
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Example: bivariate Gaussian

Consider Z with Fréchet margins and Gaussian dependence,
ρ ∈ (−1,1). Recall ν places mass only on the axes of C.

Define η = (1+ρ)/2, the coefficient of tail dependence (Led-
ford and Tawn, 1997).

• Z exhibits hidden regular variation of order α0 = 1/η

• The density of the hidden measure ν0 can be written

ν0(dr × dw) =
1

η
r−(1+1/η)dr ×

1

4η
{w(1− w)}−1/2η−1dw︸ ︷︷ ︸

H0(dw)

H0 is infinite on (0,1).
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Example: bivariate Gaussian
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Goal: a model for hidden regular variation.
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Characterizations of HRV

How do we generate multivariate models with hidden regular
variation?

• Mixture method (Maulik & Resnick, 2005)

• Maxima method (de Haan & Zhou, 2011)

• This work: additive method

Our focus: finite-sample inference
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Tail equivalence (Maulik and Resnick, 2004)

Two random vectors X and V are tail equivalent on the cone
C∗ if

nP
(
X

b∗n
∈ ·
)

v−→ ν∗(·) and nP
(
V

b∗n
∈ ·
)

v−→ cν∗(·)

as n→∞ in M+(C∗) for c > 0.

‘Extremes of X and V samples taken in C∗ will have the same
asymptotic properties.’
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Outline

• Crash course on multivariate regular variation

• Hidden regular variation

• Sum characterization of HRV

• Inference for HRV via MCEM

• Application: air pollution data
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Sum characterization of HRV

Suppose Z is regular varying on C with hidden regular variation
on C0:

nP
(
Z

an
∈ ·
)

v−→ ν(·) in M+(C) and

nP
(
Z

bn
∈ ·
)

v−→ ν0(·) in M+(C0)

with ν(C0) = 0 and bn/an → 0 as t→∞.

Aim: representation for Z which captures tail behavior on
both C and C0 and from which an inference procedure may
be developed.

We propose the sum Y + V.
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Construction of Y + V

Define Y = RW, with P(R > an) ∼ 1/n and W drawn from
limiting angular measure H. Notice that Y has support only
on C \ C0.

Let V ∈ [0,∞)d be regular varying on C0 with limit measure
ν0:

nP
(
V

bn
∈ ·
)

v−→ ν0(·) in M+(C0).

Further assume that on C,

P(‖V‖ > r) ∼ cr−α∗

as r →∞, with c > 0 and

α∗ > α ∨ (α0 − α).

Assume R, W, V are independent.
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Tail equivalence result

Then

nP
(
Y + V

an
∈ ·
)

v−→ ν(·) in M+(C)

(Jessen and Mikosch, 2006).

Furthermore, tail equivalence also holds on C0:

Theorem. With Y and V as defined above,

nP
(
Y + V

bn
∈ ·
)

v−→ ν0(·) in M+(C0).

View Z as a sum of ‘first-order’ Y and ‘second-order’ V.

The sum Y + V is tail equivalent to Z on both C and C0.
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Conditions on V

We require two identifiability conditions on the tail index α∗

of V on the full cone C:

• α∗ > α identifies the regular variation of Z as that of Y

• α∗ > α0 − α ensures that the HRV of Z is the same as V

Das and Resnick (2014): what happens for “=” or “<” in
second item.

No known case of HRV with infinite measure ν0 which sat-
isfies both...
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Infinite measure example: bivariate Gaussian

Z has Fréchet margins and Gaussian dependence (ρ < 1).
Recall: H0 is infinite on N0 = (0,1).

Poses difficulty near the axes of C.

Proposed construction of V:

• Restrict to Cε0 = C0 ∩Nε
0, where Nε

0 = [ε,1− ε] for
ε ∈ (0,1/2).

• Simulate W0 from probability density H0(dw)/H0(Nε
0)

• Let R0 follow a Pareto distribution with α = 1/η

• V = [R0W0, R0(1−W0)]T

Y + V is tail equivalent to Z on C and Cε0.
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Sum representation of bivariate Gaussian

Example with ρ = 0.5 (n = 2500):
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For any set completely contained in Cε0 we achieve the correct
limit measure ν0.

Choice of ε involves a trade-off between:
• Size of the subcone on which tail equivalence holds

• Threshold at which Y + V is a useful approximation

(Weller and Cooley, 2014)
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Outline

• Crash course on multivariate regular variation

• Hidden regular variation

• Sum characterization of HRV

• Inference for HRV via MCEM

• Application: air pollution data
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EM algorithm

Observe realizations from Z, tail equivalent to Y+V. Assume
parametric forms and perform ML inference via EM.

If we assume Z = Y + V,

log f(z; θ) =
∫

log f(z,y,v; θ)f(y,v | z; θ(k))dydv

−
∫

log f(y,v | z; θ)f(y,v | z; θ(k))dydv

:= Q(θ | θ(k))−H(θ | θ(k)).

• EM constructs and maximizes Q

• MLE obtained as long as H is maximized at θ(k)

Here: Z and Y + V are only tail equivalent; θ governs tail
behavior of Y and V. Requires a modification of the EM
setup.
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EM for extremes

Consider distributions with densities gY(y; θ) and gV(v; θ)
which are tail equivalent to the true distributions; i.e.,

gY(y; θ) ∼= fY(y; θ) for ‖y‖ > r∗Y
gV(v; θ) ∼= fV(v; θ) for ‖v‖ > r∗V,

Complete likelihood is based on limiting Poisson point pro-
cesses for Y and V.

• E step: expectation is taken with respect to g(y,v | z; θ(k)).

• M step: maximization is taken over only ‘large’ y and v.

We show
H(θ(k) | θ(k))−H(θ | θ(k)) ≥ 0

using Jensen’s inequality.
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Implementation via MCEM

Q is not available in closed form.

At the E step of the (k + 1)th iteration, simulate from

gY(y; θ(k))gV(z− y; θ(k)) ∝ g(y,v | z; θ(k))

for all z and use the simulated realizations to compute

Q̂m(θ | θ(k)) =
1

m

m∑
j=1

`(θ; z,yj,vj).

employing Poisson point process likelihoods for large realiza-
tions of Y and V.

Key idea: likelihood only depends on θ for ‘large’ y and v!

Uncertainty estimates obtained via Louis’ method.
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Simulation study: bivariate Gaussian

Simulate 104 realizations from a bivariate Gaussian distribu-
tion with correlation ρ, transform marginals to unit Fréchet.

Tail equivalent on C and Cε0 to Y + V, where V has angular
measure

H0(dw) =
1

4η
{w(1− w)}−1/2η−1dw.

Aim: estimate η = (1 + ρ)/2 from the ε-restricted model.

• Must select both ε and r∗V

• Trade-off in finite sample estimation problems

• bn also unknown – incorporated as a scale parameter
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Results

Shown for η = 0.75 (ρ = 0.5), based on 200 replicates
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Outline

• Crash course on multivariate regular variation

• Hidden regular variation

• Sum characterization of HRV

• Inference for HRV via MCEM

• Application: air pollution data
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Air pollution data
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• Aim: estimate risk set probabilities

• Heffernan & Tawn (2004): asymptotic independence
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Competing approaches

Examine three modeling approaches:

1. Fit the Y+V model with ε-restricted infinite hidden mea-
sure model via proposed MCEM procedure.

2. Assume asymptotic dependence with bivariate logistic an-
gular dependence. Fit to largest 10% of observations in
terms of L1 norm. Estimate β̂ = 0.72.

3. Conditional model of Heffernan & Tawn (2004).

40



Diagnostics
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Select ε = 0.2 and r∗V = 7.5. Estimate η̂ = 0.753.
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Results - risk set estimates

Model P̂× 100 #expected p-val
1 (Y + V) 2.07 43.1 0.13

2 (asy. dep.) 2.52 52.3 0.41
3 (H & T) 2.26 47.0 0.35
Empirical 2.41 50 −
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Results - risk set estimates

Model P̂× 100 #expected p-val
1 (Y + V) 0.14 2.71 0.51

2 (asy. dep.) 0.35 7.22 0.07
3 (H & T) 0.15 3.06 0.64
Empirical 0.14 3 −
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Results - risk set estimates

Model P̂× 100 #expected p-val
1 (Y + V) 0.012 0.25 0.78

2 (asy. dep.) 0.084 1.75 0.17
3 (H & T) 0.005 0.10 0.90
Empirical 0 0 −
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Summary

This work introduces a sum representation for regular varying
random vectors possessing hidden regular variation.

• Useful for finite sample simulation & estimation

• Asymptotically justified by tail equivalence result

• Difficulty arises when ν0 is infinite

– Our fix: restrict ν0 to a compact cone
– Others: de Haan & Zhou (2011), Mitra & Resnick (2010)

• Likelihood estimation via modified MCEM algorithm

• Captures tail dependence in the presence of asymptotic
independence
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Ongoing Work

Model selection procedures:

• Asymptotic dependence at weak level vs.

• Asymptotic independence + hidden regular variation

Extension of ideas to spatial settings - lattice data.
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