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Abstract

In modeling the joint upper tail of a multivariate distribution, a fundamental deficiency of classical
extreme value theory is the inability to distinguish between asymptotic independence and exact inde-
pendence. In this work, we examine multivariate threshold modeling based on the framework of regular
variation on cones. Tail dependence is described by an angular measure, which in some cases is de-
generate on joint tail regions despite strong sub-asymptotic dependence in such regions. The canonical
example is a bivariate Gaussian distribution with any correlation less than one. Hidden regular variation
(Resnick, 2002), a second-order tail decay on these regions, offers a refinement of the classical theory.

Previous characterizations of random vectors with hidden regular variation are not well-suited for
joint tail estimation in finite samples, and estimation approaches thus far have been unable to model
both the heavier-tailed regular variation and the hidden regular variation simultaneously. We propose to
represent a random vector with hidden regular variation as the sum of independent first- and second-order
regular varying pieces. We show our model is asymptotically valid via the concept of multivariate tail
equivalence, and illustrate simulation methods with the bivariate Gaussian example. Finally, we outline
a framework for estimation from our model via the EM algorithm.

1 Introduction

Classical multivariate extreme value theory provides a theoretical framework for describing the joint upper
tail of a random vector. Modeling approaches based on classical theory are based on the limiting distribution
of componentwise maxima. An extension to multivariate threshold exceedances is based on the framework
of regular variation. This approach describes the limiting joint tail of a random vector as the product of
a radial component which decays like a power function and an angular component governed by a limiting
angular measure on the unit sphere under a chosen norm. Over the past 15 years, it has been recognized
that such an approach can fail in applied modeling of joint tails. The fundamental shortcoming is that the
first-order angular measure is degenerate on some joint tail regions, thus masking possible (and potentially
strong) dependence structure at sub-asymptotic levels. Ledford and Tawn (1996) provided a first attempt
at accounting for this sub-asymptotic dependence, using the example of the bivariate Gaussian distribution
with correlation ρ < 1.

Following Ledford and Tawn (1996), many papers have offered refinements to the classical theory in
attempts to resolve the flaw of the first-order limit. Ledford and Tawn (1997) and Ramos and Ledford
(2009) focus specifically on modeling bivariate joint tails in the case that the first-order limit fails to capture
dependence. Heffernan and Tawn (2004) offer a conditional approach, while Coles et al. (1999) examine
measures of dependence in the asymptotic independence setting. Draisma et al. (2004) and Peng (1999)
offer other approaches to joint tail estimation.

From a probabilistic perspective, the concept of hidden regular variation (Resnick, 2002) offers a mathe-
matical structure for describing sub-asymptotic dependence, and is based on a generalization of the methods
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of Ledford and Tawn (1996, 1997). Hidden regular variation is essentially a second-order regular variation
on regions where the first-order limit is degenerate. More treatment is given in Maulik and Resnick (2004),
Heffernan and Resnick (2007), and Mitra and Resnick (2010). More recently, De Haan and Zhou (2011)
offered a refinement on Ramos and Ledford (2009), offering an alternative polar coordinate transformation
for modeling joint tails.

From a modeling standpoint, the joint tail approach of Ledford and Tawn (1997) and Ramos and Ledford
(2009) fails to simultaneously account for the first-order limiting tail structure, and it is not immediately
clear how to extend such methods into dimension greater than two. Maulik and Resnick (2004) offer a
representation of hidden regular variation as a mixture of a first-order and second-order component. While
this provides an asymptotically valid characterization, a mixture representation is clumsy for finite samples
and is difficult to justify intuitively.

In this work, we offer a characterization of a random vector with hidden regular variation as the sum of
independent first- and second-order pieces. An alternative to Maulik and Resnick (2004), our characterization
is more amenable to finite-sample representation and estimation. This representation is asymptotically
justified via the concept of multivariate tail equivalence (Maulik and Resnick, 2004). When the hidden
measure is finite, we can simulate realizations from our model; when the measure is infinite, we offer a slight
adjustment to our simulation methods.

We first review the concepts of multivariate regular variation, hidden regular variation, and tail equiv-
alence. To describe tail dependence in practice, one typically transforms each marginal distribution to a
common, heavy-tailed marginal; often, the transformation is to unit Fréchet: FZ(z) = exp{−z−1} (Ledford
and Tawn, 1997; Ramos and Ledford, 2009). The Fréchet marginal case is a special case of multivariate
regular variation, which describes the joint tail as decaying like a power function. A decomposition into
polar coordinates arises, and tail dependence can be characterized by a limiting angular measure. Hidden
regular variation offers a second-order analogue of multivariate regular variation. A polar coordinate decom-
position also arises; however, the resulting limiting angular measure is not guaranteed to be finite. Finally,
it is through the concept of tail equivalence that we show the asymptotic validity of our model.

1.1 Multivariate Regular Variation

Multivariate regular variation on cones provides a probabilistic framework for describing tail dependence
and modeling multivariate threshold exceedances. C is a cone of Rd if for a set A ∈ C, tA ∈ C for any t > 0.
We assume some familiarity with regular variation of functions in the univariate case; the interested reader
is referred to Bingham et al. (1989) and de Haan (1970). Let M+(C) be the space of Radon measures on
C. Following Resnick (2007), we say that a random vector Z taking values in a subset of [0,∞)d is regular
varying on C = [0,∞] \ {0} with finite limiting measure ν 6= 0 if there exists a function b(t) ↑ ∞ as t→∞
such that on C,

tP
[

Z

b(t)
∈ ·
]

v−→ ν(·), (1)

in M+(C) as t→∞ and
v−→ denotes vague convergence of measures (Resnick, 2007).

It follows that there exists α ≥ 0 such that the limiting measure ν in (1) has the scaling property

ν(cA) = c−αν(A), c > 0 (2)

for any relatively compact set A ⊂ C, where α > 0 is called the tail index. The joint tail power-function
behavior can be seen in (2). The function b(t) is regular varying of order 1/α, which following Resnick (2002)
we denote b(t) ∈ RV1/α.

The homogeneity property (2) suggests a transformation to polar coordinates. Let ‖·‖ be any norm on C,
and consider the unit sphere N = {z ∈ C : ‖z‖ = 1}. Define the bijective transformation T : Rd → [0,∞)×N

via T (Z) = (‖Z‖,Z‖Z‖−1). The measure ν can then be expressed in terms of the new coordinate system
(r,θ) via

ν = να ×H (3)

where να is a Pareto measure; i.e. να((x,∞]) = cx−α, c > 0, and H is a non-negative measure on N. In the
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case where Z has common marginal distributions, H must further satisfy the balance condition∫
N

θ1H(dθ) =

∫
N

θjH(dθ), j = 2, ..., d. (4)

Mitra and Resnick (2010) refer to the situation where Z has common marginals (or at least a common
marginal tail index) as the standard case. In practice, transformations can be applied to give common
marginal tail behavior; see Resnick (2007). H is called the spectral measure or angular measure. When
α = 1, a common choice for ‖ · ‖ is the L1 norm, in which case H is a measure on the unit simplex
N = ∆d−1 = {z ∈ C : z1 + ... + zd = 1} (Coles and Tawn, 1991; Ballani and Schlather, 2011; Cooley et al.,
2010).

The polar coordinate representation (3) of the measure ν can be seen by considering, for any r > 0 and
Borel set θ ∈ N,

ν({z ∈ E : ‖z‖ > r, ‖z‖−1z ∈ θ}) = r−αν({r−1z : ‖z‖ > r, ‖z‖−1z ∈ θ})
= r−αν({r−1z : ‖r−1z‖ > 1, ‖r−1z‖−1(r−1z) ∈ θ})
= r−αν({y ∈ E : ‖y‖ > 1, ‖y‖−1y ∈ θ})
= r−αH(θ),

where y = r−1z. Thus with respect to the coordinate system (‖y‖,y‖y‖−1), we have that ν is a product
measure. Finally, we note that by appropriate choice of normalizing function b(t), H(·) can be made to be
a probability measure.

1.2 Hidden Regular Variation and Tail Equivalence

It is possible that the limiting measure ν in (1) places zero mass on pie-shaped regions {z ∈ C : z‖z‖−1 ⊂ N}
of the cone C. In such cases, the normalizing function b(t) obliterates any finer structure of the random
variable on such regions, if such a finer structure exists. The angular measure H thus places zero mass on
corresponding regions of the unit sphere N. A classic example is the joint upper tail of a multivariate normal
random variable with correlations less than one (Ledford and Tawn, 1996). This prompted Resnick (2002)
to formulate the concept of hidden regular variation.

Consider a subcone C0 ⊂ C with ν(C0) = 0. A random vector Z is said to possess hidden regular
variation if, in addition to (1), there exists a non-decreasing function b0(t) ↑ ∞ with b(t)/b0(t) → ∞ such
that

tP
[

Z

b0(t)
∈ ·
]

v−→ ν0(·) (5)

as t→∞ in M+(C0). The measure ν0 decomposes into a product of Pareto measure να0
and positive Radon

measure H0 on N0 = N ∩ C0. The function b0(t) ∈ RV1/α0
, with α0 > α; thus, Z has a lighter tail on C0

than on C. As N0 may not be a relatively compact set of N, H0 may be either finite or infinite; see (Resnick,
2002; Maulik and Resnick, 2004; De Haan and Zhou, 2011) for details. Finally, ν0 is homogeneous with tail
index α0, analogous to (2).

The concept of multivariate tail equivalence was introduced in Maulik and Resnick (2004). Consider
random vectors Y and Z taking values in [0,∞) with distribution functions F and G, respectively. Y and
Z are said to be tail equivalent on the cone C∗ ⊆ C = [0,∞] \ {0} if there exists a scaling function b∗(t) ↑ ∞
such that

tP
[

Y

b∗(t)
∈ ·
]

v−→ ν∗(·) and tP
[

Z

b∗(t)
∈ ·
]

v−→ cν∗(·) (6)

in M+(C∗) for some constant c ∈ (0,∞) and measure ν∗ on C∗. The definition (6) implies that the extremes
of samples from Y and Z have the same asymptotic properties on C∗, up to a scaling constant. Following

Maulik and Resnick we write Y
te(C∗)∼ Z.

The remainder of the paper is structured as follows: in Section 2 we describe the construction of our sum
representation and show that our representation is tail equivalent to a random vector with hidden regular
variation. Section 3 demonstrates simulation from our representation for a random vector with Gaussian
dependence structure. We conclude in Section 4 with a discussion and framework for estimation of our
model.
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2 Regular Varying Sum Representation

To represent random vectors possessing hidden regular variation, Maulik and Resnick (2004) consider mix-
tures of random vectors with differing tail indices and angular measures. Maulik and Resnick show such
mixtures are tail equivalent to a random vector possessing hidden regular variation. In contrast to Maulik
and Resnick, here we consider sums of such random vectors. We show that such sums can be constructed to
be tail equivalent on both C and C0 to a random vector with hidden regular variation.

Consider a random vector Z ∈ [0,∞)d which is multivariate regular varying on C with limit measure ν;
that is for some function b(t) ↑ ∞ with b(t) ∈ RV1/α

tP
[

Z

b(t)
∈ ·
]

v−→ ν(·) (7)

as t→∞ in M+(C). Without loss of generality, assume that the resulting angular measure H is a probability
measure.

Further assume that Z exhibits hidden regular variation on a subcone C0 ⊂ C. That is, ν(C0) = 0 and
there exists a function b0(t) ↑ ∞, b0(t) ∈ RV1/α0

with α0 > α such that

tP
[

Z

b0(t)
∈ ·
]

v−→ ν0(·) (8)

as t→∞ in M+(C0).
We construct a sum of regular varying random vectors that is tail equivalent to Z on both the full

cone C and the subcone C0. Define a random vector Y = RW taking values in [0,∞)d, where P(R >
r) ∼ 1/b←(r) as r → ∞ and W ∼ H(·), where H and b(t) are as above. Recall that ν(C0) = 0 and thus
H(N ∩ C0) = 0. We thus define W to be such that P[W ∈ A] = 0 if H(A) = 0. Assume that the quantities
R and W are independent. It follows that, on C

tP
[
Y

b(t)
∈ ·
]

v−→ ν(·) (9)

as t→∞ (Maulik and Resnick, 2004).
Now consider a random vector E ∈ (0,∞]d defined on the same probability space and independent of R

and W which is multivariate regular varying on C0 with tail index α0 > α. Assume

P(‖E‖ > r) ∼ cr−α
∗

as r →∞,

for some c > 0, where the tail index α∗ satisfies

α∗ > α ∨ (α0 − α). (10)

Finally, let E satisfy

tP
[

E

b0(t)
∈ ·
]

v−→ ν0(·), (11)

in M+(C0), where ν0 is as above.
To review, we construct Y to be regular varying with tail index α with support on C \ C0; Y has no

hidden regular variation on C0. E is regular varying on the subcone C0 with tail index α0 > α and limit
measure ν0; that is, E has the same tail behavior as Z on C0. We further assume E is lighter-tailed than Y
on C; see Remark 3 below. It can be shown that mixtures of Y and E are tail equivalent to Z on both C
and C0; see (Resnick, 2002; Maulik and Resnick, 2004; Mitra and Resnick, 2010). In many applications, it
may be more natural to represent Z as a sum of the random vectors Y and E.

Next we show

Z
te(C)∼ Y + E and (12)

Z
te(C0)∼ Y + E. (13)
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The result (12) follows from Jessen and Mikosch (2006); we review the proof below. Following a similar
argument, we prove (13).

With Y and E defined above, we adapt Lemma 3.12 of Jessen and Mikosch (2006) to show tail equivalence
on the full cone C. Consider a relatively compact rectangle A ∈ C; that is, A is bounded away from 0. This
class of sets A generates vague convergence in C; thus it is sufficient to show

lim
t→∞

tP
[
Y + E

b(t)
∈ A

]
= lim
t→∞

tP
[

Z

b(t)
∈ A

]
= ν(A). (14)

Assume without loss of generality that A = [a,b] = {x ∈ C : a ≤ x ≤ b}. For small ε > 0, define
a−ε = (a1− ε, ..., ad− ε), and define b−ε analogously. Define the rectangles A−ε = [a−ε,b] and Aε = [a,b−ε].
For small ε, the rectangles Aε and A−ε are relatively compact in C, and Aε ⊂ A ⊂ A−ε. Finally we note
that ν(∂A) = 0; there is no mass on the edges of A.

For small ε > 0 and fixed t > 0,

P
[
Y + E

b(t)
∈ A

]
= P

[
Y + E

b(t)
∈ A, ‖E‖

b(t)
> ε

]
+ P

[
Y + E

b(t)
∈ A, ‖E‖

b(t)
≤ ε
]

≤ P [‖E‖ > b(t)ε] + P
[
Y

b(t)
∈ A−ε

]
.

Thus

lim sup
t→∞

tP
[
Y + E

b(t)
∈ A

]
≤ lim sup

t→∞
tP [‖E‖ > b(t)ε] + lim sup

t→∞
tP
[
Y

b(t)
∈ A−ε

]
= lim
t→∞

t1−α
∗/αε−α

∗
+ lim sup

t→∞
tP
[
Y

b(t)
∈ A−ε

]
= ν(A−ε)↘ ν(A) as ε→ 0,

since α∗ > α by assumption. For the lower bound, recognize

P
[
Y + E

b(t)
∈ A

]
≥ P

[
Y

b(t)
∈ Aε, ‖E‖

b(t)
≤ ε
]

≥ P
[
Y

b(t)
∈ Aε

]
− P [‖E‖ > b(t)ε] ,

and so

lim inf
t→∞

tP
[
Y + E

b(t)
∈ A

]
≥ lim inf

t→∞
tP
[
Y

b(t)
∈ Aε

]
− lim inf

t→∞
tP [‖E‖ > b(t)ε]

= ν(Aε)↗ ν(A) as ε→ 0.

Collecting the upper and lower bounds, and using the fact that A is a ν-continuity set, we achieve the desired
result

tP
[
Y + E

b(t)
∈ ·
]

v−→ ν(·)

in M+(C).

2.1 Tail Equivalence on C0

For (13) to hold, it is sufficient to show the following result:

Theorem. For Y, E, b0(t), and ν0 defined as above,

tP
[
Y + E

b0(t)
∈ ·
]

v−→ ν0(·) (15)

as t→∞ in M+(C0).
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Proof. It suffices to consider any rectangle A0 which is relatively compact in C0, and show that

lim
t→∞

tP
[
Y + E

b0(t)
∈ A0

]
= ν0(A0).

Without loss of generality assume A0 = [c,d] = {x ∈ C0 : c ≤ x ≤ d}. For small ε > 0, define the rectangles
A−ε0 = [c−ε,d] and Aε0 = [c,d−ε], with c−ε and d−ε defined analogously to a−ε and b−ε above. For small ε,
Aε0 and A−ε0 are relatively compact in C0, Aε0 ⊂ A0 ⊂ A−ε0 , and ν0(∂A0) = 0.

Recognize that for small ε > 0 and fixed t > 0,

P
[

E

b0(t)
∈ Aε0

]
= P

[
E

b0(t)
∈ Aε0,

‖Y‖
b0(t)

≤ ε
]

+ P
[

E

b0(t)
∈ Aε0,

‖Y‖
b0(t)

> ε

]
≤ P

[
Y + E

b0(t)
∈ A0

]
+ P

[
‖E‖
b0(t)

≥ ‖c‖, ‖Y‖
b0(t)

> ε

]
.

Thus by definition of Y and E and independence,

lim inf
t→∞

tP
[
Y + E

b0(t)
∈ A0

]
≥ lim inf

t→∞
tP
[

E

b0(t)
∈ Aε0

]
− lim inf

t→∞
tP
[
‖E‖
b0(t)

≥ ‖c‖
]
P
[
‖Y‖
b0(t)

> ε

]
= ν0(Aε0)− lim

t→∞
t(t−α

∗/α0‖c‖−α
∗
)(t−α/α0ε−α)

= ν0(Aε0)− lim
t→∞

t1−(α
∗+α)/α0‖c‖−α

∗
ε−α

= ν0(Aε0)↗ ν0(A0) as ε→ 0,

since A0 is a ν0-continuity set. Here we have used the assumption α∗ > α0 − α.
For the upper bound, we employ the fact that H(C0) = 0. For fixed t,

P
[
Y + E

b0(t)
∈ A0

]
= P

[
Y + E

b0(t)
∈ A0,

‖Y‖
b0(t)

≤ ε
]

+ P
[
Y + E

b0(t)
∈ A0,

‖Y‖
b0(t)

> ε

]
= I + II

Notice that I is bounded above by

P
[

E

b0(t)
∈ A−ε0

]
.

Recalling that by construction P[Y/b0(t) ∈ A−ε] = 0,

II = P
[
Y + E

b0(t)
∈ A0,

‖Y‖
b0(t)

> ε,
E

b0(t)
∈ A0,

Y

b0(t)
/∈ A−ε0

]
+ P

[
Y + E

b0(t)
∈ A0,

‖Y‖
b0(t)

> ε,
E

b0(t)
/∈ A0,

Y

b0(t)
/∈ A−ε0

]
≤ P

[
‖E‖
b0(t)

≥ ‖c‖, ‖Y‖
b0(t)

> ε

]
+ P

[
∨di=1Ei
b0(t)

> ε,
‖Y‖
b0(t)

> ε

]
.

Then

lim sup
t→∞

tP
[
Y + E

b0(t)
∈ A0

]
≤ lim sup

t→∞
tP
[

E

b0(t)
∈ A−ε0

]
+ lim sup

t→∞
tP
[
‖E‖
b0(t)

≥ ‖c‖
]
P
[
‖Y‖
b0(t)

> ε

]
+ lim sup

t→∞
tP
[
∨di=1Ei
b0(t)

> ε

]
P
[
‖Y‖
b0(t)

> ε

]
= ν0(A−ε0 ) + lim

t→∞
t(t−α

∗/α0‖c‖−α
∗
)(t−α/α0ε−α) + lim

t→∞
t(t−α

∗/α0ε−α
∗
)(t−α/α0ε−α)

= ν0(A−ε0 )↘ ν0(A0) as ε→ 0,

by independence and ν0-continuity of A0, and again following from α∗ > α0 − α.
Finally, putting together the upper and lower bounds yields the desired result (15).
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Remark 1. Heuristically, the scaled random vector (Y+E)/b0(t) can only land in C0 when ‖Y‖ is small and
‖E‖ is large. Suitably normalized large values of Y will converge to points outside of C0, and by independence,
the probability of Y and E being simultaneously large is asymptotically negligible.

Remark 2. The proof relies on Y being constructed in such a way that P[Y ∈ C0] = 0. Such a condition
gives convergence to the measure ν0 on C0. The result may not hold in general if Y has angular measure H
only in the limit and exhibits hidden regular variation on C0. We do not impose such additional conditions
on the support of E.

Remark 3. Assumption (10) imposes two constraints on the behavior of E on C. The first, requiring α∗ > α,
is needed to obtain convergence of the properly normalized sum to the required limit measure ν on C. This
assumption eliminates the possibility of taking E to be Z itself, and poses additional difficulty in the case
where ν0 is infinite on C0.

The second assumption imposed by (10), namely that α∗ > α0 − α, is necessary to obtain convergence
on C0. Essentially, if E is much heavier-tailed on C than on C0, convergence is not obtained on C0. Figure
1 gives a plot of valid values of (α0, α

∗) for α = 1. As an example, consider a random vector in dimension
d = 3 which is regular varying on C with tail index α = 1. To represent hidden regular variation of tail index
α0 = 5/2 on the full open subcone C0 = {z ∈ C : z1 ∧ z2 ∧ z3 > 0}, one would need to choose E to have tail
decay on C which is lighter than that corresponding to α∗ = 3/2.

On the other hand, the case when this condition does not hold may not be of interest in applications.
One example in dimension d = 2 is a distribution with unit Fréchet margins and Gaussian dependence with
negative correlation. Finally, we note that when the hidden angular measure is finite, one can always choose
α∗ = α0 and restrict the support of E to C0.

Remark 4. Because the measure H can be made to be a probability measure, simulation of realizations of
the random vector Y is often quite tractable, especially in low dimensions. The angular measure H0 of E
may be infinite on C0, making simulation more difficult. In some cases, H0 can be made to be a probability
measure under an alternative transformation (Mitra and Resnick, 2010; De Haan and Zhou, 2011). This
still may pose difficulty in simulation; see Section 3 for an example.

3 Example: Bivariate Gaussian Dependence

We now demonstrate an example of Z for which we can simulate a tail equivalent representation Y + E.
We explore the case of asymptotic independence plus hidden regular variation in dimension d = 2, with the
bivariate normal distribution as the classical example (Ledford and Tawn, 1996). Through simulation, we see
that the sum representation results in a more realistic representation of the random vector Z compared to
previous approaches. Here the resulting hidden measure is not finite, and difficulty arises near the boundaries
of the subcone. We review previous attempts to address this difficulty, and propose a novel method which
accommodates our sum representation.

Up to this point, we have considered polar coordinate transformations defined by any norm ‖ · ‖ on
C. Unless noted otherwise, in this section we consider the L1 norm transformation defined by r = z1 + z2
and w = z1/r. This transformation is common in most multivariate extreme value analyses with Fréchet
marginal variables.

Consider the bivariate random vector Z = (Z1, Z2)T , where Zi = −1/ log Φ(Xi), i = 1, 2, and (X1, X2)T

follows a bivariate Gaussian distribution with correlation ρ < 1. Here Φ(·) is the standard Gaussian dis-
tribution function. Sibuya (1960) showed that asymptotic independence holds; i.e., we can find b(t) ∈ RV1
such that

tP
[

Z

b(t)
∈ ·
]

v−→ ν = ν1 ×H, (16)

in M+(C), where H consists of point masses at the axes N ∩ {x ∈ C : x1 ∧ x2 = 0}. If b(t) = 2t, H is a
probability measure with point masses of 1/2 at w = 0 and w = 1.

An exploration of the second-order regular variation of Z was provided by Ledford and Tawn (1996, 1997).
Ledford and Tawn formulate this in terms of the joint survivor function F̄ (z1, z2) := P[Z1 > z1, Z2 > z2].
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Figure 1: Valid choices of α∗ for different values of α0 (blue shading) when α = 1.

Ledford and Tawn (1997) show

F̄ (z1, z2) ∼ (z1z2)−1/(1+ρ)L(z1, z2; ρ)(1 +O[1/ log{min(z1, z2)}]), (17)

where L(z1, z2) is a slowly varying function given by (Ledford and Tawn, 1996) satisfies

lim
t→∞

L(tz1, tz2)

L(t, t)
= 1.

Here, the function g(z1, z2) ≡ 1 (Ledford and Tawn, 1997). Ledford and Tawn (1996) derive

L(t, t; ρ) = (1 + ρ)3/2(1− ρ)−1/2(4π log t)−ρ/(1+ρ). (18)

The random vector Z also exhibits hidden regular variation. Consider a set [z,∞] for z = (z1, z2) with
z1, z2 > 0. One can show

tP
[

Z

b0(t)
∈ [z,∞]

]
−→ (z1z2)−1/2η =: ν0([z,∞]) (19)

as t→∞, where the function b0(t) := 2U←(t), with

U(t) =
(2t)1/η

L(2t, 2t)
, (20)

for L given by (18). Ledford and Tawn refer to η = (1 + ρ)/2 ∈ (0, 1] as the coefficient of tail dependence.
It is easily shown for sets of the form A(r,B) = {z ∈ C0 : ‖z‖ > r, z‖z‖−1 ∈ B} that

ν0(A) = r−1/ηH0(B), (21)
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where

H0(dw) =
1

4η
{w(1− w)}−1−1/2η; (22)

see, for example, Beirlant et al., 2004, chapter 9. Note that H0(N0) =
∫
(0,1)

H0(dw) = +∞, thus the hidden

measure ν0 is infinite on C0.
The fact that the hidden angular measure is infinite poses difficulty in finite-sample simulation of the

joint tail of Z. Because the hidden measure diverges near the endpoints of N0, one always encounters
difficulty near the axes of C. Several authors have explored ways to remedy this problem. Mitra and Resnick
(2010) propose an alternative transformation T̃ (z1, z2) = (z(2), z/z(2)), where z(2) = min(z1, z2). The limit
measure ν0 can then be decomposed into the product of a Pareto measure and probability measure on
Ñ = {z ∈ C0 : z(2) = 1}. However, this approach avoids behavior near the axes, and it is not clear how one
would simulate random vectors which are tail equivalent to Z under this alternative representation.

More recently, De Haan and Zhou (2011) offered an alternative for characterizing the random vector Z.
De Haan and Zhou cleverly define a transformation on C0 via T ∗(z1, z2) = (s, v), where s = (z−11 + z−12 )−1

and v = s/z1. They then show that the limiting measure of the joint tail of the normalized vector Z1/η

can be decomposed into the product of a Pareto measure and a finite measure H∗ on N∗ = {z ∈ C0 :
(z−11 + z−12 )−1 = 1}. Specifically for the Gaussian dependence example, H∗ is proportional to a Beta
distribution with parameters (1/2, 1/2). While De Haan and Zhou (2011) offer a method for constructing a
random vector which is tail equivalent to Z, their simulation method still encounters trouble near the axes
of C, which we illustrate in Section 3.1.

3.1 Simulation from Sum Representation

Because the hidden measure with density H0(dw) given by (22) is infinite on (0, 1), one cannot simulate
from it directly. As an alternative, we propose an approximation to H0(dw) by restricting the subcone C0

to Cε0 = {z ∈ C0 : z1‖z‖−1 ∈ Nε
0}, where Nε

0 = [ε, 1− ε] for some ε ∈ (0, 1/2). The density (22) can then be
made to be a probability density on Nε

0 via Hε
0(dw) = H0(dw)/H0(Nε

0) for w ∈ Nε
0. One can then simulate

realizations from Hε
0 via an accept-reject algorithm or other sampling method.

We proceed to simulate realizations of Ẑ = Y + Ê which is tail equivalent to Z on C and Cε0. Define
Y as follows: let R follow a Pareto distribution with P[R > r] = 2/r for r ≥ 2. Draw a Bernoulli(0.5)
random variable B independently of R, and let Y1 = RB, Y2 = R(1 − B). For a fixed sample size n, draw
R0 independently of Y = (Y1, Y2)T with R0 such that

P[R0 > x] =

{
dε,nx

−1/η if x > (dε,n)η

1 otherwise,
where dε,n = (2U←(n))1/η

{
H0(Nε

0)

n

}
.

Draw n independent realizations of W0 from the density Hε
0(dw) independently of Y and R0. Define Ê =

(Ê1, Ê2) via
Ê1 = R0W0 and Ê2 = R0(1−W0).

Then for any set A(r,B) = {z ∈ Cε0 : ‖z‖ > r, z1‖z‖−1 ∈ B} with B a Borel set of Nε
0,

nP

[
Ê

b0(n)
∈ A0(r,B)

]
= nP

[
R0

2U←(n)
> r,W0 ∈ B

]
= nP [R0 > 2rU←(n)]P[W0 ∈ B]

= n
[
dε,n(2rU←(n))−1/η

] H0(B)

H0(Nε
0)

= r−1/ηH0(B)

for r > {H0(Nε
0)/n}η, which is precisely the decomposition of ν0 in (21).

When examining the limiting measure of a set in the full subcone C0 which is not completely contained
in Cε0, a bias is induced by the choice of ε. To see this, extend the restricted hidden measure via Hε

0{(0, ε)} =

9



Hε
0{(1− ε, 1)} ≡ 0, and consider a set A = [z,∞] for z1, z2 > 0. Note that one can choose n and ε such that

z ∈ Cε0 and z1 + z2 > {H0(Nε
0)/n}η, and in this case we have

nP

[
Ê

b0(n)
∈ A

]
= n

∫ 1

0

∫ ∞
b0(n)z1

w ∨ b0(n)z2
1−w

η−1dε,nr
−(1+1/η)drHε

0(dw)

=

∫ 1

0

{
w

z1

∧ 1− w
z2

}1/η

H0(Nε
0)Hε

0(dw)

=

∫ 1−ε

ε

{
w

z1

∧ 1− w
z2

}1/η

H0(dw)

= (z1z2)−1/2η − 1

2

(
ε

1− ε

)1/2η

[z
−1/η
1 + z

−1/η
2 ]

= ν0([z,∞])−B(ε, z), (23)

where the bias term B(ε, z) can be made arbitrarily small via choice of ε.

Figure 2 shows n = 2500 simulated realizations of Z and Ẑ for ε = 10−3, 10−2 and correlations of
ρ = 0.8, 0.5, 0.2, as well as Z∗ of De Haan and Zhou (2011) and Y, the limiting first-order piece. Note that

Ẑ appears to capture the tail dependence structure of Z better than Z∗ of De Haan and Zhou (2011). The

primary difference between Ẑ simulations with ε = 0.01 and ε = 0.1 is the number of points near the axes of
the cone C. As ε decreases we see more large points with angular components near 0 and 1 in finite samples.
This is due to the increase in scale parameter of R0 induced by smaller ε; see Section 3.2.

In Table 1, we provide a comparison of Z and Ẑ by examining the empirical average number of points
in specific sets over 250 simulations of n = 2500 points from both Z and Ẑ for ρ = 0.5 and ε = 10−3, 10−2.
Note that for ε = 0.01, the convergence to the limiting measure is slow for regions that are near the axes of
the cone C. However, for sets of the form A = [z,∞], choosing ε small results in near-unbiased estimation

of ν0(A) by Ẑ. For sets that are near the axes, choosing ε slightly larger results in faster convergence to the
limiting measure (in terms of z1, z2), particularly when considering marginal distributions. The trade-off
is that the bias is greater for sets on C0; see Section 3.2. For comparison, we also show results from Z∗ of
De Haan and Zhou (2011) and Y, the first-order piece of Ẑ. We note that Z∗ results in more points than
expected in Z in most regions of the cone C. This is likely due to the slowly varying function (18), which is
not accounted for by De Haan and Zhou. Of course, the first-order approximation Y fails to capture any of
the distribution of Z on C0.
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Figure 2: Simulation of n = 2500 points from (left to right) Z with Gaussian dependence structure (ρ = 0.5),

Ẑ = Y + Ê for ε = 0.01, 0.1, Z∗ of De Haan and Zhou (2011), and Y, the first-order limiting measure.

3.2 Choice of ε

As Figure 2 and Table 1 indicate, one drawback of our construction Ẑ is that it results in significantly more
points near the axes than we see in Z. This is not surprising when one considers the limiting marginal
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Table 1: Summary statistics from 250 simulations of n = 2500 points from Z, a bivariate random vector
with Fréchet marginals and Gaussian dependence with ρ = 0.5 and Ẑ as constructed in Section 3.1 with
ε = 10−3, 10−2. For comparison, we also show a summary of Z∗ of De Haan and Zhou (2011) and of Y, the
first-order approximation to Z. Numbers reported are empirical means and simulation-based 95% intervals.

Number of points in the set [z,∞] with z1 = z2 = z Number of points with Z2 > z

z 100 250 500 500 1000 2000
Z 3.20 (1, 6) 0.90 (0, 3) 0.36 (0, 2) 4.80 (2, 8) 2.39 (0, 6) 1.29 (0, 3)

Ẑ (ε = 0.01) 3.97 (1, 7) 1.08 (0, 3) 0.36 (0, 2) 9.39 (5, 14) 4.19 (2, 8) 1.89 (0, 4)

Ẑ (ε = 0.1) 2.89 (1, 6) 0.84 (0, 3) 0.3 (0, 2) 6.03 (2, 10) 2.86 (0, 6) 1.42 (0, 4)
Z∗ 11.29 (7, 16) 3.21 (1, 6) 1.14 (0, 3) 8.48 (5, 14) 3.97 (1, 7) 1.93 (0, 4)
Y 0 0 0 5.00 (2, 9) 2.37 (0, 5) 1.16 (0, 3)

measure of Ê:

nP

[
Ê1

b0(n)
> z1

]
=

∫ 1

0

(
w

z1

)1/η

H0(Nε
0)Hε

0(dw)

=

∫ 1−ε

ε

(
w

z1

)1/η

H0(dw)

= z
−1/η
1

∫ 1−ε

ε

w1/ηH0(dw)

=
1

2
z
−1/η
1

{(
ε

1− ε

)−1/2η
−
(

ε

1− ε

)1/2η
}

. (24)

For very large z1, this is negligible compared to the heavier-tailed Y1 piece of Ẑ1, which has limit measure
z−11 . However, for small ε the scaling factor in (24) is quite large, and plays a significant role in finite samples.
This difficulty can be alleviated by choosing a slightly larger ε, which will reduce the magnitude of the scaling
factor in (24).

The drawback of choosing a larger value for ε is that is increases the bias term in (23). That is, for sets
in C0 for which smaller ε results in greater coverage by Cε0, a larger ε increases the rate of convergence to the
limiting measure, but also decreases the accuracy of the approximation to the limiting measure of such a set.
Thus the choice of ε involves a trade-off between the marginal behavior of Ẑ and the size of the restricted
subcone Cε0.

While the infinite hidden angular measure of a Fréchet-marginal random vector with Gaussian depen-
dence poses difficulty in simulation, our sum representation of Z in terms of independent Y and E provides
several advantages over previous approaches. We are able to capture not only the first-order limit on the
whole cone C, but also the hidden regular varying piece on the subcone Cε0. We can choose ε such that the
restricted subcone Cε0 becomes arbitrarily close to C0. Choosing ε involves a trade off between bias in the
limiting measure of sets not fully contained in Cε0, and the level at which the limiting measure is a good
approximation for finite samples.

We also point out here that our representation Y+E offers an advantage in finite samples over a mixture
of Y and E, as proposed by Maulik and Resnick (2004). In applications in which marginal distributions
are transformed to be unit Fréchet, no observation has any component exactly equal to zero. This is also
the case for our sum representation, but is not a feature of the mixture characterization. Finally, it is quite
natural to think of tail observations from a random vector Z as a sum of first- and second-order pieces.
Viewing tail observations as arising from a mixture distribution is not as intuitive.

4 Summary and Discussion

This work presents a new representation of a multivariate regular varying random vector with hidden regular
variation, in terms of a sum of independent regular varying pieces. We have shown our representation to
be asymptotically justified via the concept of multivariate tail equivalence. An illustration of simulation
from our model was provided using the bivariate Gaussian as an example. The infinite hidden measure of
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this example introduced difficulty in simulation; however, we can still simulate the lighter-tailed piece on a
restricted subcone. Our sum representation shares features with real data in applications and provides an
intuitive model for the joint tail of a random vector.

The sum representation provides a framework for maximum-likelihood estimation and likelihood-based
model selection procedures. Finite samples of random vectors from random vectors exhibiting hidden regular
variation can be viewed as arising from the sum of components Y and E, whereas finite samples cannot be
reconciled with the mixture representation of Maulik and Resnick (2004). Our current work is to develop
appropriate statistical procedures.

Specifically, as only realizations of Z are observed, we treat Y and E as unobserved latent variables
and employ the EM algorithm (Dempster et al., 1977). One can write down a complete log-likelihood for a
parameter vector θ governing the tails of Y and E:

`(θ|z,y, e) = `Y(θ|y) + `E(θ|e) (25)

based on limiting point process results for Y and E (Resnick, 2007). Conditional on z and a fixed value of
the parameter vector θ(k), one can view the conditional density of unobserved Y and E as

p(y, e|z,θ(k)) =
pY(y|θ(k))pE(z− y|θ(k))

pZ(z|θ(k))

∝ pY(y|θ(k))pE(z− y|θ(k)). (26)

One can speculate that in many cases, one can simulate realizations of Y and E from (26) without much
difficulty. A Monte Carlo Expectation-Maximization algorithm could then be used to iteratively compute
and maximize

Q(θ|θ(k)) =

∫
`(θ|z,y, e)p(y, e|z,θ(k))dyde. (27)

Estimation of this model via the EM algorithm is a direction for future research.
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