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1. PROOF OFTAIL EQUIVALENCE ON €

With Y and V' defined in§ 3, we adapt Lemma-32 of Jessen & Mikosch (2006) to show
tail equivalence on the full con&. Consider a relatively compact rectanglec ¢; that is, A is
bounded away frond. This class of setsl generates vague convergencetiiResnick, 2007,
Lemma 6.1); thus it is sufficient to show

. Y+V . Z
tllglot pr{w € A} = tllglot pr{m € A} =v(A).

Without loss of generality letd = [a,b] = {z € €:a <z < b}. For smalle > 0, define
a”¢ = (max{0,a; — €},...,max{0,aq — €})", and definé~° analogously. Define the rectan-
gles A=¢ = [a™¢,b] and A = [a, b €]. For smalle, the rectanglesA® and A~< are relatively
compact in¢, andA° ¢ A C A~¢. Note thatv(0A) = 0 (Jessen & Mikosch, 2006); there is no
mass on the edges df.

For smalle > 0 and fixedt > 0,

Uiy <A = Ui <A > Ui < <

< pr{[V] > b(t)e} —i—pr{% c A‘E} .

Thus
Y Y
limsupt pr Y+v € Ay <limsuptpr{||V| > b(t)e} + limsupt prq¢ — € A™¢
t—o00 b(t) t—o00 t—o00 b(t)

=v(A7) Nv(A), e =0,
sincea™* > o by assumption. For the lower bound, recognize

pr{ Tt e ap 2o { g e as il < bz ek v 0006,
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and so

Y Y
litrgiogft pr{%)v € A} > ligiogft pr{@ € Ae} —ligci)]gft pr{||[V| > b(t)e}

=v(A%) S v(A), e = 0.

Collecting the upper and lower bounds, and using the fat¢t4hig a v-continuity set, we see

that
Y+V
tpr{w c } —)I/('),t—>OO,

vaguely inM (€).

2. FINITE HIDDEN MEASURE SIMULATION STUDY

We apply the proposed methodology to simulated data of dsinani = 2 which exhibit
asymptotic independence and hidden regular variation fivitte hidden angular measure. We
generaten independent realizations &f; = Y + Vs, whereY; = [RW, R(1 — W)]T andV; =
[RoWh, Ro(1 — Wp)]™, with

L= Fgr(r)=2/r,r>2 W ~ Bernoulli(1/2)
L= Fy(r) =r~" r>1 Wy~ Ho(),

all mutually independent, witl#{, the integrated measure density associated with the bigaria
logistic dependence model (Gumbel, 1960). The angularntyesfsthis dependence model is

hotuwi ) = 5 (5 1) (W =0} Vo 4 (- 0) 2 e 0,1,
As 3 — 1, hg degenerates to point masseswat 0 andw = 1, while the limiting cases — 0
corresponds to a single point masswat 1/2. We sety) = 0-75 and assume it is known, and we
aim to estimates via the proposed expectation—maximization procedure.

While the full density ofZ, could be written as a convolution in this case, we aim to study
the effects of misspecification of the model for non-extresadizations oft; andV;. Although
the true radial component densities}gfandV; follow Pareto distributions, here we lgt- and
gy be densities associated with the same angular componemlsrfodY; andV;, but Fréchet
distributed radial componentd”|| and||V || with scale parameters 2, 1 and shape parameters 1,
1/n, respectively. These densities differ from true densitie¥; andV; for small ||y|| and||v||
but rapidly converge to these as the magnitude grows, @gsaiting differing supports.

To illustrate the performance of the proposed estimatitvese over different parameter val-
ues, threshold settings, and sample sizes, we perform tinga¢ien scheme on 500 replications
of n realizations ofZ,, with three different settings, shown in Table 1. The depecd param-
eters chosen signify moderate, weak, and strong hiddedep#éndence, respectively, while the
thresholds chosen correspond to th8, @95, and @99 theoretical quantiles of the imposed
Fréchet distributions of radial components. In each casechoose an initial value oh =
250 for the number of Monte Carlo replications, and implentka scheme of Booth & Hobert
(1999) for increasingn as described if§ 5.3 with « = 0-25 andr = 3. We determine the al-
gorithm has converged when the convergence criterionricnit€20) is met for three successive
iterations, withy; = 0-001 andd, = 0-002. Initial values3(®) ~ U, with U following a uniform
distribution centered at and of widths @, 04, and 03 for settings 1, 2, and 3, respectively.
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Table 1.Sample sizes, true values100), selected thresholds, mean pa-

rameter estimates{100), root mean square error(00),95% confi-

dence interval coverage rates, and median number of itematfor esti-
mation procedure applied to 500 repetitions of simulatethda

Setting n B r& ri B RMSE Coverage medih)

1 2500 50 19D 54 520 31 944 20
2 5000 70 39D 93 670 33 776 12
3 10000 25 199 315 288 62 702 18

Simulations were performed using R on the Lynx computindgesysat the National Center for
Atmospheric Research.

Table 1 shows mean parameter estimates, their root mearesgpuars, coverage rates of 95%
confidence intervals constructed via a normal approximatmd the median number of iter-
ations needed to obtain convergence for each simulatiomagce In each case, the algorithm
converged relatively quickly, with median number of itevas of 20, 12, and 18, respectively.
We note the bias in the estimatesfrom the estimation procedure due to the misspecification
of the model, which is largest in setting 3, which correspotaistrong tail dependence in the
Vs component. Further examination found that this bias is rm@gtre whers is close to 0 or 1;
that is, near the limiting degenerate cases. This bias vadageel by choosing a higher threshold;
however, in small samples relatively low thresholds musth@sen to reduce uncertainty. Con-
fidence intervals constructed via Louis (1982) were soméeahigconservative in all cases, with
coverage rates decreasing as the bias increases.
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