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1. PROOF OFTAIL EQUIVALENCE ON C

With Y andV defined in§ 3, we adapt Lemma 3·12 of Jessen & Mikosch (2006) to show
tail equivalence on the full coneC. Consider a relatively compact rectangleA ∈ C; that is,A is
bounded away from0. This class of setsA generates vague convergence inC (Resnick, 2007,
Lemma 6.1); thus it is sufficient to show
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Without loss of generality letA = [a, b] = {x ∈ C : a ≤ x ≤ b}. For small ǫ > 0, define
a−ǫ = (max{0, a1 − ǫ}, . . . ,max{0, ad − ǫ})T, and defineb−ǫ analogously. Define the rectan-
glesA−ǫ = [a−ǫ, b] andAǫ = [a, b−ǫ]. For smallǫ, the rectanglesAǫ andA−ǫ are relatively
compact inC, andAǫ ⊂ A ⊂ A−ǫ. Note thatν(∂A) = 0 (Jessen & Mikosch, 2006); there is no
mass on the edges ofA.

For smallǫ > 0 and fixedt > 0,
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Thus
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= ν(A−ǫ) ց ν(A), ǫ → 0,

sinceα∗ > α by assumption. For the lower bound, recognize
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and so
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Collecting the upper and lower bounds, and using the fact that A is a ν-continuity set, we see
that
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vaguely inM+(C).

2. FINITE HIDDEN MEASURE SIMULATION STUDY

We apply the proposed methodology to simulated data of dimension d = 2 which exhibit
asymptotic independence and hidden regular variation withfinite hidden angular measure. We
generaten independent realizations ofZs = Ys + Vs, whereYs = [RW,R(1 −W )]T andVs =
[R0W0, R0(1−W0)]

T, with

1− FR(r) = 2/r, r > 2 W ∼ Bernoulli(1/2)

1− FR0
(r) = r−1/η, r > 1 W0 ∼ H0(·),

all mutually independent, withH0 the integrated measure density associated with the bivariate
logistic dependence model (Gumbel, 1960). The angular density of this dependence model is

h0(w;β) =
1

2

(

1

β
− 1

)

{w(1 − w)}−1−1/β{w−1/β + (1− w)−1/β}β−2, β ∈ (0, 1).

As β → 1, h0 degenerates to point masses atw = 0 andw = 1, while the limiting caseβ → 0
corresponds to a single point mass atw = 1/2. We setη = 0·75 and assume it is known, and we
aim to estimateβ via the proposed expectation–maximization procedure.

While the full density ofZs could be written as a convolution in this case, we aim to study
the effects of misspecification of the model for non-extremerealizations ofYs andVs. Although
the true radial component densities ofYs andVs follow Pareto distributions, here we letgY and
gV be densities associated with the same angular component models forYs andVs, but Fréchet
distributed radial components‖Y ‖ and‖V ‖ with scale parameters 2, 1 and shape parameters 1,
1/η, respectively. These densities differ from true densitiesof Ys andVs for small‖y‖ and‖v‖
but rapidly converge to these as the magnitude grows, despite having differing supports.

To illustrate the performance of the proposed estimation scheme over different parameter val-
ues, threshold settings, and sample sizes, we perform the estimation scheme on 500 replications
of n realizations ofZs, with three different settings, shown in Table 1. The dependence param-
eters chosen signify moderate, weak, and strong hidden taildependence, respectively, while the
thresholds chosen correspond to the 0·9, 0·95, and 0·99 theoretical quantiles of the imposed
Fréchet distributions of radial components. In each case,we choose an initial value ofm =
250 for the number of Monte Carlo replications, and implement the scheme of Booth & Hobert
(1999) for increasingm as described in§ 5.3 withα = 0·25 andr = 3. We determine the al-
gorithm has converged when the convergence criterion criterion (20) is met for three successive
iterations, withδ1 = 0·001 andδ2 = 0·002. Initial valuesβ(0) ∼ U , with U following a uniform
distribution centered atβ and of widths 0·5, 0·4, and 0·3 for settings 1, 2, and 3, respectively.
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Table 1.Sample sizes, true values (×100), selected thresholds, mean pa-
rameter estimates (×100), root mean square errors (×100),95% confi-
dence interval coverage rates, and median number of iterations for esti-

mation procedure applied to 500 repetitions of simulated data

Setting n β r∗Y r∗V β̂ RMSE Coverage median(k)

1 2500 50 19·0 5·4 52·0 3·1 94·4 20
2 5000 70 39·0 9·3 67·0 3·3 77·6 12
3 10000 25 199·0 31·5 28·8 6·2 70·2 18

Simulations were performed using R on the Lynx computing system at the National Center for
Atmospheric Research.

Table 1 shows mean parameter estimates, their root mean square errors, coverage rates of 95%
confidence intervals constructed via a normal approximation, and the median number of iter-
ations needed to obtain convergence for each simulation scenario. In each case, the algorithm
converged relatively quickly, with median number of iterations of 20, 12, and 18, respectively.
We note the bias in the estimates ofβ from the estimation procedure due to the misspecification
of the model, which is largest in setting 3, which corresponds to strong tail dependence in the
Vs component. Further examination found that this bias is mostsevere whenβ is close to 0 or 1;
that is, near the limiting degenerate cases. This bias was reduced by choosing a higher threshold;
however, in small samples relatively low thresholds must bechosen to reduce uncertainty. Con-
fidence intervals constructed via Louis (1982) were somewhat anticonservative in all cases, with
coverage rates decreasing as the bias increases.
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